Table of Symbols

Important Symbols and Where to Find Them:

Symbol Typical Meaning Reference
a, b, c, α, β, γ Scalars (lowercase)
x, y, z Vectors (bold lowercase) Section 1.1, 2.0
A, B, C Matrices (bold uppercase) Section 2.1, 2.2
\(x^\top, A^\top\) Transpose of a vector or matrix Section 2.2
\(A^{-1}\) Inverse of a matrix Section 2.2
\(\langle x, y \rangle\) Inner product of \(x\) and \(y\) Section 4.2
\(x^\top y\) Dot product of \(x\) and \(y\) Section 2.0, 4.2
\(B = (b_1, b_2, b_3)\) Ordered tuple
\(B = [b_1, b_2, b_3]\) Matrix of column vectors stacked horizontally Section 2.6
\(B = \{b_1, b_2, b_3\}\) Set of vectors (unordered) Section 2.6
\(\mathbb{Z}, \mathbb{N}\) Integers and natural numbers
\(\mathbb{R}, \mathbb{C}\) Real and complex numbers
\(\mathbb{R}^n\) \(n\)-dimensional vector space of reals
\(\forall x\) Universal quantifier (“for all \(x\)”)
\(\exists x\) Existential quantifier (“there exists \(x\)”)
\(a := b\) \(a\) is defined as \(b\)
\(a =: b\) \(b\) is defined as \(a\)
\(a \propto b\) \(a\) is proportional to \(b\) (\(a = \text{constant} \cdot b\))
\(g \circ f\) Function composition (“\(g\) after \(f\)”)
\(\Leftrightarrow\) If and only if
\(\Rightarrow\) Implies
\(A, C\) Sets
\(a \in A\) \(a\) is an element of \(A\)
\(\emptyset\) Empty set
\(A \setminus B\) Elements in \(A\) but not in \(B\) Section 2.3
\(D\) Number of dimensions (\(d = 1, \dots, D\))
\(N\) Number of data points (\(n = 1, \dots, N\))
\(I_m\) Identity matrix of size \(m \times m\) Section 2.2
\(0_{m,n}\) Matrix of zeros of size \(m \times n\)
\(1_{m,n}\) Matrix of ones of size \(m \times n\)
\(e_i\) Standard (canonical) basis vector (1 in the \(i\)-th position) Section 2.6
dim Dimensionality of a vector space Section 2.6
rk(A) Rank of matrix \(A\) Section 2.6
Im(Φ) Image of a linear mapping \(Φ\) Section 2.7
ker(Φ) Kernel (null space) of \(Φ\) Section 2.6
span[b₁] Span (generating set) of \(b_1\) Section 2.6
tr(A) Trace of \(A\) Section 4.1
det(A) Determinant of \(A\) Section 2.2, 4.1
\(| \cdot |\) Absolute value or determinant (depending on context)
\(\| \cdot \|\) Norm (Euclidean unless stated otherwise) Section 3.1
\(\lambda\) Eigenvalue or Lagrange multiplier
\(E_\lambda\) Eigenspace corresponding to eigenvalue \(\lambda\)
\(x \perp y\) \(x\) and \(y\) are orthogonal Section 3.2
\(V\) Vector space Section 2.0, 2.4
\(V^\perp\) Orthogonal complement of \(V\) Section 3.6
\(\sum_{n=1}^N x_n\) Sum: \(x_1 + \dots + x_N\)
\(\prod_{n=1}^N x_n\) Product: \(x_1 \cdot \dots \cdot x_N\)
\(\theta\) Parameter vector
\(\frac{\partial f}{\partial x}\) Partial derivative of \(f\) with respect to \(x\)
\(\frac{df}{dx}\) Total derivative of \(f\) with respect to \(x\)
\(\nabla\) Gradient
\(f^* = \min_x f(x)\) Minimum value of \(f\)
\(x^* \in \arg\min_x f(x)\) Value \(x^*\) that minimizes \(f\)
\(\mathcal{L}\) Lagrangian
\(\mathcal{L}\) Negative log-likelihood
\(\binom{n}{k}\) Binomial coefficient, \(n\) choose \(k\)
\(V_X[x]\) Variance of \(x\) with respect to the random variable \(X\)
\(E_X[x]\) Expectation of \(x\) with respect to the random variable \(X\)
\(\mathrm{Cov}_{X,Y}[x, y]\) Covariance between \(x\) and \(y\)
\(X \perp\!\!\!\perp Y \mid Z\) \(X\) is conditionally independent of \(Y\) given \(Z\)
\(X \sim p\) Random variable \(X\) is distributed according to \(p\)
\(\mathcal{N}(\mu, \Sigma)\) Gaussian distribution with mean \(\mu\) and covariance \(\Sigma\)
\(\mathrm{Ber}(\mu)\) Bernoulli distribution with parameter \(\mu\)
\(\mathrm{Bin}(N, \mu)\) Binomial distribution with parameters \(N, \mu\)
\(\mathrm{Beta}(\alpha, \beta)\) Beta distribution with parameters \(\alpha, \beta\)

Table of Abbreviations and Acronyms

Acronym Meaning
e.g. Exempli gratia (Latin: “for example”)
GMM Gaussian mixture model
i.e. Id est (Latin: “this means”)
i.i.d. Independent, identically distributed
MAP Maximum a posteriori
MLE Maximum likelihood estimation/estimator
ONB Orthonormal basis
PCA Principal component analysis
PPCA Probabilistic principal component analysis
REF Row-echelon form
SPD Symmetric, positive definite
SVM Support vector machine