Calculus and
       Linear Algebra

  • Preface
    • Why This Material Matters for Data Science and Machine Learning
    • Disclaimers
    • A Final Word
  • I Review
  • 1 Functions and Linear Equations
    • 1.1 Lecture Content
    • 1.2 Lecture Notes
      • 1.2.1 Common Functions and Their Graphs
      • 1.2.2 Finding the Domain of a Function
      • 1.2.3 Solving Systems Using the Elimination Method
      • 1.2.4 Revenue, Cost, and Profit Functions
    • 1.3 Examples
      • 1.3.1 Applications of Linear Equations
      • 1.3.2 Systems of Linear Equations
    • 1.4 Practice Problems
    • 1.5 Self-Assessment
    • 1.6 Lesson Checklist
  • II Matrix Algebra
  • 2 Introduction to Matrices
    • 2.1 Lecture Content
    • 2.2 Lecture Notes
      • 2.2.1 Augmented Matrix
      • 2.2.2 Elementary Row Operations
      • 2.2.3 Gauss-Jordan Elimination Steps
    • 2.3 Examples
    • 2.4 Practice Problems
    • 2.5 Self-Assessment
    • 2.6 Lesson Checklist
  • 3 Matrix Operations
    • 3.1 Lecture Content
    • 3.2 Lecture Notes
      • 3.2.1 Matrix Notation: \(A_{m \times n}\)
      • 3.2.2 Notation for Matrix Entries: \(a_{ij}\)
      • 3.2.3 Matrix Addition and Subtraction
      • 3.2.4 Scalar Multiplication
      • 3.2.5 Matrix Multiplication
      • 3.2.6 Matrix Transpose
      • 3.2.7 \(a_{ij}\) Notation for Operations
    • 3.3 Examples
      • 3.3.1 Addition and Subtraction
      • 3.3.2 Multiplication
    • 3.4 Practice Problems
    • 3.5 Self-Assessment
    • 3.6 Lesson Checklist
  • 4 Inverses and Determinants
    • 4.1 Lecture Content
    • 4.2 Lecture Notes
      • 4.2.1 Determinant of a \(2 \times 2\) Matrix
      • 4.2.2 Determinant of a \(3 \times 3\) Matrix
      • 4.2.3 Determinant of Higher-Order Matrices
      • 4.2.4 Inverse of a \(2 \times 2\) Matrix
      • 4.2.5 Inverse of Higher-Order Matrices (Steps)
    • 4.3 Examples
    • 4.4 Practice Problems
    • 4.5 Self-Assessment
    • 4.6 Lesson Checklist
  • III Linear Algebra
  • 5 Vector Projections
    • 5.1 Lecture Content
    • 5.2 Lecture Notes
      • 5.2.1 Vector Operations
      • 5.2.2 Standard Inner Product (Dot Product)
      • 5.2.3 Euclidean Norm of a Vector
      • 5.2.4 Cosine of the Angle Between Two Vectors
      • 5.2.5 Vector Projection Formula
      • 5.2.6 Geometric Interpretations
    • 5.3 Examples
    • 5.4 Practice Problems
    • 5.5 Self-Assessment
    • 5.6 Lesson Checklist
  • 6 Basis and Orthonormal Basis
    • 6.1 Lecture Content
    • 6.2 Lecture Notes
      • 6.2.1 Linear Independence
      • 6.2.2 Span
      • 6.2.3 Standard Basis
      • 6.2.4 Gram-Schmidt Orthonormalization
      • 6.2.5 Coordinates Relative to an Ordered Basis
      • 6.2.6 Change of Basis Matrix in \(\mathbb{R}^2\)
    • 6.3 Practice Problems
    • 6.4 Self-Assessment
    • 6.5 Lesson Checklist
  • 7 The Rotation Matrix
    • 7.1 Lecture Material
    • 7.2 Lecture Notes
      • 7.2.1 Rotation Matrix in \(\mathbb{R}^2\)
      • 7.2.2 Geometric Interpretation: Left Multiplication as Rotation
      • 7.2.3 Stretching and Compression
      • 7.2.4 Reflection Matrices
      • 7.2.5 Summary
    • 7.3 Practice Problems
    • 7.4 Self-Assessment
    • 7.5 Lesson Checklist
  • 8 Eigenvalues and Eigenvectors
    • 8.1 Lecture Content
    • 8.2 Lecture Notes
      • 8.2.1 Eigenvalues and Eigenvectors
      • 8.2.2 Finding Eigenvalues (for \(2 \times 2\) or \(3 \times 3\) matrices)
      • 8.2.3 Finding Eigenvectors
      • 8.2.4 Diagonalization (for \(2 \times 2\) matrices with two distinct eigenvalues)
    • 8.3 Examples
    • 8.4 Practice Problems
    • 8.5 Self-Assessment
    • 8.6 Lesson Checklist
  • IV Differential Calculus
  • 9 Exponential and Logarithmic Functions
    • 9.1 Lecture Content
    • 9.2 Lecture Notes
      • 9.2.1 Rules for Exponents
      • 9.2.2 Rules for Logarithms
      • 9.2.3 Finding an Exponential Equation from Two Points
      • 9.2.4 Solving Exponential and Logarithmic Equations
      • 9.2.5 Applications and Formulas
    • 9.3 Examples
      • 9.3.1 Quadratic Functions
      • 9.3.2 Exponent Rules
      • 9.3.3 Logarithm Rules
    • 9.4 Practice Problems
    • 9.5 Self Assessment
    • 9.6 Lesson Checklist
  • 10 Limits and Continuity
    • 10.1 Lecture Content
    • 10.2 Lecture Notes
      • 10.2.1 Estimate a Limit Using a Table of Values
      • 10.2.2 Use Factoring to Evaluate Limits
      • 10.2.3 One-Sided Limits and Vertical Asymptotes
      • 10.2.4 Dominant Term Analysis for Limits at Infinity
      • 10.2.5 Continuity of Piecewise Functions
    • 10.3 Examples
      • 10.3.1 Limits
      • 10.3.2 One Sided Limits
      • 10.3.3 One Sided Limits
    • 10.4 Practice Problems
    • 10.5 Self Assessment
    • 10.6 Lesson Checklist
  • 11 The Limit Definition of the Derivative
    • 11.1 Lecture Content
    • 11.2 Lecture Notes
      • 11.2.1 Limit Definition of the Derivative
      • 11.2.2 Derivative Rules for Common Functions
      • 11.2.3 Sum, Difference, and Constant Multiple Rules
      • 11.2.4 Tangent Line to a Function at a Point
    • 11.3 Examples
      • 11.3.1 Average ROC
      • 11.3.2 Average ROC
      • 11.3.3 Derivatives using Limits
      • 11.3.4 Basic Derivative Rules
    • 11.4 Practice Problems
    • 11.5 Self Assessment
    • 11.6 Lesson Checklist
  • V Derivative Formulas and Applications
  • 12 The Product and Quotient Rules
    • 12.1 Lecture Content
    • 12.2 Lecture Notes
      • 12.2.1 Product Rule for Two Functions
      • 12.2.2 Product Rule for Three Functions
      • 12.2.3 Quotient Rule
    • 12.3 Exercises
      • 12.3.1 Applications of Differentiation
      • 12.3.2 The Product and Quotient Rules
    • 12.4 Practice Problems
    • 12.5 Self Assessment
    • 12.6 Lesson Checklist
  • 13 The Chain Rule and L’Hopital’s Rule
    • 13.1 Lecture Content
    • 13.2 Lecture Notes
      • 13.2.1 Derivative of a Composition of Functions (Chain Rule)
      • 13.2.2 L’Hôpital’s Rule
    • 13.3 Examples
      • 13.3.1 The Chain Rule
      • 13.3.2 Derivatives of Logs and Exponentials
    • 13.4 Practice Problems
    • 13.5 Self Assessment
    • 13.6 Lesson Checklist
  • 14 Implicit Differentiation
    • 14.1 Lecture Content
    • 14.2 Lecture Notes
      • 14.2.1 Higher-Order Derivatives
      • 14.2.2 Implicit Differentiation
    • 14.3 Examples
    • 14.4 Practice Problems
    • 14.5 Self Assessment
    • 14.6 Lesson Checklist
  • 15 Graphical Analysis
    • 15.1 Lecture Content
    • 15.2 Lecture Notes
      • 15.2.1 Finding Critical Numbers
      • 15.2.2 Classifying Maximums, Minimums, and Inflection Points
      • 15.2.3 Extreme Value Theorem (EVT)
      • 15.2.4 Intervals of Increase, Decrease, and Concavity
    • 15.3 Examples
      • 15.3.1 Maximum and Minimum Values
      • 15.3.2 Applied Problems
      • 15.3.3 Increasing and Decreasing
      • 15.3.4 Curve Sketching
    • 15.4 Practice Problems
    • 15.5 Self Assessment
    • 15.6 Lesson Checklist
  • VI Integral Calculus
  • 16 Antiderivatives
    • 16.1 Lecture Content
    • 16.2 Lecture Notes
      • 16.2.1 Basic Antiderivatives and Rules
      • 16.2.2 Integration by Substitution
      • 16.2.3 Integration by Parts
    • 16.3 Examples
      • 16.3.1 Antiderivatives
      • 16.3.2 U-Substitution
      • 16.3.3 Integration by Parts
    • 16.4 Practice Problems
    • 16.5 Self Assessment
    • 16.6 Lesson Checklist
  • 17 Riemann Sums
    • 17.1 Lecture Content
    • 17.2 Lecture Notes
      • 17.2.1 Estimating Area Using \(n\) Rectangles
      • 17.2.2 Properties of Summation Notation
      • 17.2.3 Summation Formulas
      • 17.2.4 Limit Definition of the Definite Integral
    • 17.3 Examples
    • 17.4 Practice Problems
    • 17.5 Self Assessment
    • 17.6 Lesson Checklist
  • 18 The Fundamental Theorem of Calculus
    • 18.1 Lecture Content
    • 18.2 Lecture Notes
      • 18.2.1 Fundamental Theorem of Calculus – Part I
      • 18.2.2 Fundamental Theorem of Calculus – Part II
      • 18.2.3 Properties of Definite Integrals
      • 18.2.4 Fundamental Theorem of Calculus
    • 18.3 Practice Problems
    • 18.4 Self Assessment
    • 18.5 Lesson Checklist
  • VII Additional (Important) Topics
  • 19 Area between Curves
    • 19.1 Lecture Content
    • 19.2 Lecture Notes
      • 19.2.1 Definite Integrals as Net Area
      • 19.2.2 Simple Improper Integrals
      • 19.2.3 Area Between Two Curves
    • 19.3 Examples
    • 19.4 Practice Problems
    • 19.5 Self Assessment
    • 19.6 Lesson Checklist
  • 20 Constrained Optimization
    • 20.1 Lecture Content
  • 21 Lecture Notes
    • 21.0.1 Sketching the Feasible Region
    • 21.0.2 Maximizing the Objective Function
    • 21.1 Example
    • 21.2 Practice Problems
    • 21.3 Self Assessment
    • 21.4 Lesson Checklist
  • 22 Partial Derivatives
    • 22.1 Lecture Content
  • 23 Lecture Notes
    • 23.0.1 Evaluation of Functions of Two Variables
    • 23.0.2 Finding Partial Derivatives
    • 23.0.3 Clairaut’s Theorem (Equality of Mixed Partials)
    • 23.0.4 D-Test for Classifying Critical Points
    • 23.1 Example
      • 23.1.1 Functions of Several Variables
      • 23.1.2 Partial Derivatives
      • 23.1.3 Maximum and Minimum Values
    • 23.2 Practice Problems
    • 23.3 Self Assessment
    • 23.4 Lesson Checklist

Calculus and Linear Algebra

Lesson 22 Partial Derivatives

22.1 Lecture Content

Video: Functions of Several Variables

Video: Partial Derivatives

Video: Maximums and Minimums